

Intelligent compact drives

encoTRive overview

Exemption note

We expressly point out that the details, measurement values and tolerances provided in the drawings are not binding. They are subject to technology and design modifications. Their only objective is to illustrate the product. Please contact our sales and distribution team if you need a concrete offer with a binding drawing.

encoRive

Progress – Decentralized and Intelligent

A wide variety of products, smaller batch sizes and the individualization of production are the main requirements of progressive machines. In order to fulfill these demands, while market prices are static or even shrinking, and personnel costs are rising, automation technology must be used exhaustively. It must go beyond the actual production process and enter secondary functions such as setup and material supply tasks. encoTRive fills the gap between fieldbus and drive technology. It is a compact device containing motor, power electronics, fieldbus communication, closed-loop controller and an absolute measuring system as well as optional I/O and brake.

Contents

General

Drive technology	6/7
Design – MD, MP, MA	8/9
Combinations – drives, components	10/11

Drives

Process drive – MD 300	12/13
Positioning drive – MP 200	14/15
Positioning drive – MP 220 /-280	16/17
Positioning drive – MP xxx (060, 100, 140, 180)	18/19
servo drive – MA xxx (055, 100, 130)	20/21
Precision Gears – MD 300, MP 200/220/280	22/23

Gear variants (worm, planetary,

angular planetary gears)

Enhanced Precision Gears for MD 300, MP 200/220/280	24/25
_ Planetary gear PLE 80	
_ Angular planetary gear WPLE 80	
Simple gear for MP xxx, MA xxx	26/27
_ Planetary gear PLG 52	
_ Worm gear SG 80	
_ Worm gear SG 80 H	
Reinforced simple gear for MD xxx, MP xxx, MA xxx	28/29
_ Planetary gear PLG 63	
_ Worm gear SGF 80	

_ Worm gear SGF 120 H

Interfaces

6/7 8/9

Features – PROFIBUS, PROFINET	30
Features – CANopen	31

Accessories and options

Device-Tool (EDT) – Parameterization and diagnostis tool	32
PC-USB-to-CANopen converter – for the EDT	33
PROFIBUS hand-held operator panel – for MD drives	34
Demo kit and function blocks – for S7	35

General

Product overview – your automation partner	36/37
Addresses – sales in Germany and international	38/39

Performance

Processing Drive

As main drive for ...

- _precise positioning
- _a synchronized and cyclic transfer
- _sensor coupled position measurement
- _application optimized portal systems

To use in ...

- _accurate grinding machines
- _inspection machines
- _tool controlling modules
- _tire testing facilities

processing drive: MD page 12/13

from ... up to ...

P	Controller structure	PID
1.000 min ⁻¹ per s	Dynamics	10.000 min ⁻¹ per s
20 ms	Real time	2 ms
<u>1-2°</u>	Accuracy	20 arcmin
without	Inputs and outputs	programmable
1.000 h	Life time	30.000 h

Actuating Drive

As auxiliary drive for adjusting ...

- $_dimensions$
- _guide rails
- _stops
- _valves, dampers and sliders

To use in ...

- _folding machines
- _thermoforming machines
- _cardboard gluing machines
- _component mixing systems

actuating drive: MA page 20 ... 21

Positioning Drive

_cyclic format adjustments

_dynamic rough settings

_wood working machines

_X-ray analyzing devices

_package ejection machines

_profile measuring machines

_fine adjustments

_speed

To use in ...

As auxiliary or main drive for ...

positioning drive: MP page 14...19

TR-Electronic – Helps You to Face the Challenges of Market

TR-Electronic – Helps You to Face the Challenges of Knowing and reacting to the demands of the market is the key to success. Today, innovative drive technology has to transfer technology trends and specific user requirements into new products. Aspects like mechatronics, electronics and software must be custom-fit and industry-sector-specific. The challenges is to increase machine productivity, while simplifying the design and operation.

In combination with automation technology, the encoTRive intelligent positioning and actuating drives maximise the innovative potential of modern machinery or retrofitting. Our encoTRive integrates and tunes all important required electrical, electronic and mechanical components. encoTRive is a fully functional drive unit ready to be connected. The advantage of using decentralized drive technology is felt when realizing modular concepts, retrofits, making aquisitions or when used in machines and equipment where large measurements occur. Both aspects of innovation – automation and integration – enable progressive machine concepts. Besides the already automated main processes, the auxiliary functions have to be electromotive automated. This demands new and integrated drive technology concepts. Standardization and fieldbus systems play a dominant role. To create a perfect combination of innovation, increased performance and flexibility, you have to be able to choose from a variety of multiple drive configurations and you must be able to make optimal changes between those configurations. For this purpose, we designed and adapted the variety of the individual encoTRive models. The wide range of applications go from simple tasks for the actuating drives up to complex highly accurate tasks for positioning drives.

Decentralized Drive Technology with encoTRive

The name encoTRive is the brand for our complete drive technology product line. It is derived from the two components **absolute Encoder and DRive**, modified and exchanged with our company abbreviation **TR**.

Integration is the first trademark. Enclosed are the power and positioning electronics, zero voltage safe encoder, fieldbus technology and gear. It is also available with optional holding brake and different I/O.

Variant Diversity is the second trademark. This is due to the diverse electronic functionality, numerous gear ratios and a wide range of gear types. Further options include radial or axial shaft, solid or hollow shaft, a moderate backlash or backlash-free. This is accomplished by using a planetary, worm or special gears.

Cross-Range Compatibility is the third trademark. All series are based on a common software platform. Only the MD and MP series differ in their absolute encoder and electronics. However, they use an identical platform and use the same electric motor and gear box.

MD 300, Version PROFIBUS

Individual models are constructed for application categories. For automation tasks with different requirements we offer drives with optimal performance levels.

_Actuating Drive MA (Stellantriebe)

- _Positioning Drive MP (Positionierantriebe)
- _Drive in Core Process MD (Prozessantriebe)

This structure is supported by a standard platform in the implementation of firmware, interfaces and bus. In practice

this means, there is considerably less effort in engineering and maintenance. System costs and installation times decrease as well. Available bus systems are: PROFIBUS, PROFINET and CANopen, enhanced through busses based on newer EtherNet technologies.

The encoTRive series opens with its standard decentralized concept, a new level of automation technology that applies all mechanical engineering applications, in particular in industries like packaging, press, wood, glass, print, plastics, textile and machine tools.

Series Features

- _design according to application classification
- _implementing software platform
- _position measurement with fail-safe multi turn absolute encoder
- _integration into a mechatronic system
- _variant diversity through modularity
- _operating modes, positioning and speed control
- _control completely decentralized within the drive

Working Features

- _high resolution, 1.024 or 4.096 steps per revolution
- _long range, 4.096 or 65.536 revolutions
- _precise positioning up ±2 increments
- _smooth running even at low speed
- _limitable with software limit switch
- _set parameters according to bus standards

Design of MD, MP and MA series

Based on its standard products, TR also develops customer- and application-specific drives. The series range from simple modifications, for example in plug connectors, to drives with new drive motors and additional bus interfaces.

- _10 different electric motors
- _11 gear types (axial and rectangular shaft output)

Electronics and drives of the MD series

The absolute encoder and the electronics are arranged in extension of the motor axis and on the side of the motor. The connector cover accommodates not only the bus interface but also the application module for PROFIBUS and PROFINET. There is 1 standard M23 connector for power, logic and holding brake. In addition, there are 4 M12 connectors for bus IN/OUT and digital I/O. A sixth connector serves for communication with a PC featuring an RS-232 interface.

Electronics and drives of the MP series

The absolute encoder and the electronics are arranged in extension of the motor axis.

The electronics is simpler in its design and features less functionality than the MD series. The electronics housing is smaller as well. As a result, there is less output power during continuous operation. During intermittent operation or short-time operation, the same output and the same torque are available, but they are limited to shorter make and cycle times.

Electronics and drives of the MA series

The electronics is especially configured for short-time operation and moderate intermittent operation. The electric motors are brushed DC motors.

The absolute encoder and the electronics of the MA 025 are arranged in extension of the output shaft of the gear. The measurement involves the position of the gear shaft. The series features two defined types each with a driving torque of 2 and 4 Nm.

The absolute encoder and the electronics of the MA xxx (-055/ -100/ -130) are attached to the electric motor. This series features different power stages, torques and gear types.

Detachably mounted gears

with coupling and clamping hub

Most of the precision gears are mounted to the electric motor such that they can be detached. This is the most flexible solution for project businesses, special machine building, and medium-size series.

Gear types range from economy planetary gears to lowbacklash servo gears. Driving torques of up to 180 Nm are accessible for reinforced gears.

Non-detachably mounted gear with direct connection

All simple gears are permanently mounted to the electric motor. Coupling, clamping hub, gearbox flange and gearbox bearing are not applicable. For this purpose, the shaft of the electric motor features a pinion which couples directly to the first stage of the gear.

The gear types available are planetary gears and worm gears. The output direction of the gear shaft of drives with worm gear is set to one of the four possible directions.

Collection of drive series

	Electronics MA	МР	MD	
DC (brushed) PROFIBUS CANopen PROFINET EtherCAT	MA xxx 5. 20			
EC (electronically commutated)		MP xxx S. 18		
PROFIBUS PROFINET CANopen EtherCAT				
EC (electronically commutated)		MP 200 S. 14	MD 300 S. 12	
PROFIBUS PROFINET CANopen EtherCAT		MP 220/280 S. 16		

Possible component combinations

Process drive MD 300

The MD 300 series features comprehensive electronic functions and high-quality gears. Various gear series are available in several overall sizes and reductions.

The drives that can be configured based on these gears can be used as process drives or as auxiliary drives when special requirements must be met with regard to electronics, accuracy and mechanical flexibility.

This type series is particularly suited for special machine building where machine configurations are constantly changing, from quantities of **1** piece to medium-size series.

_for precise positioning

- _for cyclic and pulsed positioning
- _for simultaneous use of decentralized I/Os

_in machine tools _in inspection machines

_in special machines

Technical data		MD 300	
Nominal voltage	VDC	24 48	
Nominal torque S1 (S3)	Nm	0.60 (1.10)	0.60 (1.10)
Nominal power S1 (S3)	W	136 (178) 273 (357)	
Nominal speed S1 (S3)	min ⁻¹	2,175 (1,550) 4,350 (3,100)	
Nominal current S1 (S3)	A	8.0	7.6
Inertia torque	g cm ²	512 (612 with holding brake)	
Electric motor _Technology _Protection class		EC, electronically commutated motor IP 54, motor shaft IP 41	
Encoder _ Technology _ Positioning resolution _ Positioning range _ Positioning accuracy		Absolute encoder, multi turn 0.35° / 1,024 steps per revolution 65,536 revolutions ±0.7° / ±2 steps	
Gear _Type _Reductions _Torques S1 (S3)		Planetary gear / angular planetary gear 3 512 up to 44 (70) Nm, reinforced up to 120 (192) Nm	
Interfaces		RS-232, logic I/O module, limit switch	
Options		Holding brake, hand-held operator panel	
Brake chopper		Power 50 W, pulse energy 35 Ws	

Definitions

51 Continuous operation

3

Intermittent operation 25 %, 10 min Make time 2.5 min Cycle time 10 min Max. torque 1.10 Nm

True absolute encoder Fail-safe position information through electromechanical principle of measurement

Motor design

Brake	L _{motor}	B _{motor}
no	97,6 mm	🗆 66 mm
yes	132 mm	🗆 67 mm

PLE 60 gear design

Gear stages	L _{gear}
1	47 mm
2	59,5 mm
3	72 mm

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Positioning drive MP 200

The MP 200 series features numerous electronic functions and high-quality gears. Various gear series are available in several overall sizes and reductions.

The drives that can be configured based on these gears can be used as positioning drives or as auxiliary drives when special requirements must be met with regard to accuracy and mechanical flexibility.

This type series is particularly suited for special machine building where machine configurations are constantly changing, from quantities of **1** piece to medium-size series.

Fits perfect

- _for demanding positioning
- _for precise format setting
- _for high-precision pulsed positioning

_in transfer lines _in testing devices _in special machines

Technical data		MP 200		
Nominal voltage	VDC	24 48		
Nominal torque S1 (S3)	Nm	0.40 (1.10)	0.40 (1.10)	
Nominal power S1 (S3)	W	91 (178)	91 (178) 182 (357)	
Nominal speed S1 (S3)	min ⁻¹	2,175 (1,550) 4,350 (3,100)		
Nominal current S1 (S3)	A	5.2	4.8	
Inertia torque	g cm ²	512 (612 with holding brake)		
Electric motor _Technology _Protection class		EC, electronically commutated motor IP 54, motor shaft IP 41		
Encoder _ Technology _ Positioning resolution _ Positioning range _ Positioning accuracy		Absolute encoder, multi turn 0.088° / 4,096 steps per revolution 65,536 revolutions ±0.7° / ±8 steps		
Gear _ Type _ Reductions _ Torques S1 (S3)		Planetary gear / angular planetary gear 3 512 up to 44 (70) Nm, reinforced up to 120 (192) Nm		
Interfaces		(V0/V1) CANopen (402)		
Options		Holding brake		

Definitions S1 Continuous operation

53

Intermittent operation 25 %, 4 min Make time 1 min Cycle time 4 min Max. torque 1.10 Nm

True absolute encoder Fail-safe position information through electromechanical principle of measurement

MP 200, without gear

Motor design

Type series	L _{motor}	B _{motor}
no	97,6 mm	🗆 66 mm
yes	132 mm	🗆 67 mm

PLE 60 gear design

Gear stages	L _{gear}
1	47 mm
2	59,5 mm
3	72 mm

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Positioning drive MP 220/280

MP 280 complements the MP 200 series with a model with a peak torque of 2 Nm. MP 220 is a much shorter version of the MP 200 with standard torque. MP220 / 280 can be offered with the same gearbox as the MP 200 series - only the motor-side geometry is adapted to the modified motors. With MP 280, applications are in reach that require a high torque during short time. As with the MP-200, many gearbox types are available: The perfect solution for special machine construction or for use in machines with multiple applications.

Fits perfect

_vertical positioning

_acceleration of heavy loads

_to overcome initial friction

- _woodworking machines
- _packaging machines
- _in assembly and handling units

Technical data		MP 220	MP 280
Nominal voltage	VDC	48	48
Nominal torque S1 (S2)	Nm	0,40 (1,4)	0,40 (2,0)
Nominal power S1 (S2)	W	167 (586)	167 (837)
Nominal speed S1 (S2)	min ⁻¹	4.000 (4.000)	4.000 (4.000)
Nominal current S1 (S2)	А	4,5 (16)	4,5 (20)
Inertia torque	g cm ²	360	700
Electric motor _Technology Protection class		EC, electronically commutated motor IP 54, motor shaft IP 41	
Encoder _ Technology _ Positioning resolution _ Positioning range _ Positioning accuracy		Absolute encoder, multi turn 0.088° / 4,096 steps per revolution 65,536 revolutions ±0.7° / ±8 steps	
Gear _ Type _ Reductions _ Torques S1 (S3)		Planetary gear / angular planetary gear 3 512 up to 44 (70) Nm, reinforced up to 120 (192) Nm	
Interfaces			CAN open (402)
Options		Haltebremse	

definition S1 Continuous operation

S2 short-time operation 2 min

True absolute encoder Fail-safe position information through electromechanical principle of measurement

MP 220/280, without gear

MP 220/280, mit Planetengetriebe other gearbox variants on page 22–25

Motor design MP 220

break	L _{motor}
yes	108,5 mm
no	75,5 mm

Motor design MP 280

break	L _{motor}
yes	140 mm
no	107 mm

PLE 60 gear design

Gear stages	L _{gear}
1	47 mm
2	59,5 mm
3	72 mm

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Positioning drive MP xxx (-060, -100, -140, -180)

The MP xxx series is characterized by numerous electronic functions and simple gears. The gears available are planetary and worm gears in several overall sizes and reductions. The drives that can be configured based on these gears can be used as positioning drives or as auxiliary drives when simple requirements must be met with regard to electronics and mechanics.

This type series is particularly suited for mass production with defined drive configurations.

Fits perfect

_for easy positioning

- _for coarse format setting
- _for high-precision constant travel

_in handling systems _in assembly devices _in special machines

Technical data		MP 060	MP 100	MP 140	MP 180	
Nominal voltage	VDC	24	24	42	24	
Nominal torque S1	Nm	0.17	0.26	0.40	0.49	
Nominal power S1	W	55	84	120	166	
Nominal speed S1	min ⁻¹	3,080	3,090	2,860	3,240	
Nominal current S1	А	4.0	5.6	4.5	9.5	
Inertia torque	gcm ²	72	128	172	129	
Electric motor _Technology Protection class		EC, electronically commutated motor with neodynium magnet IP 50				
Encoder _Technology _Positioning resolution _Positioning range _Positioning accuracy		Absolute encoder, multi turn 0.088° / 4,096 steps per revolution 65.536 revolutions ±0.7° / ±8 steps				
Gear _ Type _ Reductions _ Torques S1 (S3)		Planetary gear / worm gear 4.5 512 / 5 75, reinforced 3 710 / 8 80 up to (24/10) Nm, reinforced up to (100/30) Nm				
Interfaces						
Options		Special voltages for large production series				

66

Drawings

Motor design

Type series	L _{motor}
MP 060	75 mm
MP 100	100 mm
MP 140	125 mm
MP 180	118 mm

PLG 52 gear design

Gear stages	L _{gear}
1	50 mm
2	65,5 mm
3	80,5 mm

Servo drive MA xxx (-055, -100, -130)

The MA xxx series is characterized by simple electronic functions and simple gears. The gears available are planetary and worm gears in several overall sizes and reductions.

The drives are designed for occasional adjustment tasks when simple requirements must be met with regard to electronics, mechanics and service life.

The MA xxx series is particularly suited for mass production with defined drive configurations.

Fits perfect

_for setting stops

_for positioning guide rails

_for aligning spray nozzles

_ in woodworking machines _ in packaging machines _ in coating machines

Technical data		MA 055	MA 100	MA 130	
Nominal voltage	VDC	24	24	48	
Nominal torque S1	Nm	0.14	0.27	0.32	
Nominal power S1	W	44	86	107	
Nominal speed S1	min ⁻¹	3,000	3,050	3,750	
Nominal current S1	А	2.7	4.9	4.5	
Inertia torque	gcm ²	400	750	750	
Electric motor _Technology _Protection class		DC, brushed motor IP 50			
Encoder _ Technology _ Positioning resolution _ Positioning range _ Positioning accuracy		Absolute encoder, multi turn 0.088° / 4,096 steps per revolution 65,536 revolutions ±0.7° / ±8 steps			
Gear _ Type _ Reductions _ Torques S1 (S3)		Planetary gear / worm gear 4.5 512/5 75, reinforced 3 710 / 8 80 up to (24/10) Nm, reinforced up to (100/30) Nm			
Interfaces		CANopen (402) CONT CANopen (402) Contract Canopen (402)			
Options		Special voltages for large production series			

MA xxx, with worm gear other gearbox variants on page 26 – 29

Motor design

Type series	L _{motor}
MA 055	95 mm
MA 100	125 mm
MA 130	125 mm

PLG 52 gear design

Gear stages	L _{gear}
1	50 mm
2	65,5 mm
3	80,5 mm

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Precision Gears for MD 300, MP 200/220/280

Planetary Gear PLE 60

Permanent Operation/Periodic Duty up to 44/70 Nm

The PLE 60 is the perfect economical alternative to servo planetary gears. The motor and gear are connected with a detachable coupling and clamping hub. Friction losses are negligible. The gear is suitable for all applications in where it is adequate to have a backlash of approximately 15 arcmin.

Features

- _low backlash (10-12-15 arcmin), (1-2-3)-stage
- _high level of efficiency (96-94-90 %), (1-2-3)-stage
- _high admissable shaft forces (600/500) N, (axial/radial)

_high short-term overload factor 1,60 _arbitrary mounting position _lifetime lubrication

Angular Planetary Gear WPLE 60

Permanent Operation/Periodic Duty up to 44/70 Nm

The WPLE 60 is the 90° angle version to the PLE 60. The motor and gear are connected with a detachable coupling and clamping hub. Friction losses are negligible. A bevel gear 1:1 is in front of the PLE 60.

Features

_low backlash, (16-18-21 arcmin), (1-2-3)-stage high level of efficiency (94-92-88 %), (1-2-3)-stage _high admissable shaft forces (600/500) N, (axial/radial)

- _high short term overload factor 1,60
- _arbitrary mounting position
- _lifetime lubrication

Harmonic Drive gear HFUC-14

Continuous / intermittent torque up to 7.8 / 28 Nm

The HFUC-14 is a backlash-free precision gear and is nondetachably connected to the motor. It is ideally suited for applications where the backlash of servo gears is insufficient. The angular tolerance is determined by the torsional stiffness.

Features

- $_4$ different reductions i = $(30 \dots 100)$ _high load-dependent efficiency
- high allowed radial force 1.500 N

_short-term overload 100 % _any installation position lifetime lubrication

up to 44/70 Nm

up to 44/70 Nm

Backlash-free

Gear stages	L _{gear}			
1	47 mm			
2	59,5 mm			
3	72 mm			

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Enhanced Precision Gears for MD 300, MP 200/220/280

Planetary Gear PLE 80

Permanent Operation/Periodic Duty up to 130/208 Nm

The PLE 80 is the perfect economical alternative to servo planetary gears. The motor and gear are connected with a detachable coupling and clamping hub. Friction losses cannot be neglected. The gear is suitable for all applications where it is adequate to have a backlash of approximately 15 arcmin.

Features

low backlash (7-9-11 arcmin), (1-2-3)-stage

- _high level of efficiency (96-94-90 %), (1-2-3)-stage
- _high admissable shaft forces, (1.200/950 N), (axial-radial)

_high short term overload factor 1,60 _arbitrary mounting position

_lifetime lubrication

Angular Planetary gear WPLE 80

Permanent Operation/Periodic Duty up to 130/208 Nm

The WPLE 80 is the 90° angle version to the PLE 80. The motor and gear are connected with a detachable coupling and clamping hub. Friction losses can not be neglected. A bevel gear 1:1 is in front of the PLE 80. The gear backlash increases by an angle part of 6 arcmin.

Features

_low backlash (13-15-17 arcmin), (1-2-3)-stage _high level of efficiency (94-92-88 %), (1-2-3)-stage _high admissable shaft forces, (1.200/950 N), (axial-radial)

bis 130/208 Nm

_high short term overload factor 1,60
_arbitrary mounting position
_lifetime lubrication

Gear stages	L _{gear}			
1	60,5 mm			
2	77,5 mm			
3	95 mm			

Gear stages	L _{gear}		
1	60,5 mm		
2	77,5 mm		
3	95 mm		

Simple gears for MP xxx, MA xxx

Planetary gear PLG 52

Continuous torque up to 24 Nm

The PLG 52 is a gear with simple circumferential backlash and is non-detachably connected to the motor. It is suitable for any application in which the circumferential backlash is approx. 1° and the startup frequency does not have to meet special requirements. Friction losses can be neglected.

Features

_backlash (1-1-1,5)°, (1-2-3) -stage _level of efficiency (90-81-73) %, (1-2-3) -stage _admissable shaft forces, (300/350) N, (axial/radial)

_output shaft with double ball bearing _arbitrary mounting position

_lifetime lubrication

Worm gear SG 80, with solid shaft Continuous torque up to 10 Nm

The SG 80 is a worm gear with one-sided shaft and is

non-detachably connected to the motor. It is suitable for applications with confined installation spaces and low circumferential backlash requirements. Friction losses can be neglected.

Features

_backlash 1° _level of efficiency (70...25) % bei 1.500 min⁻¹ _admissable shaft forces, (300/350) N, (axial/radial)

_output shaft offset by 31 mm _arbitrary mounting position _lifetime lubrication

up to 10 Nm

up to 24 Nm

up to 10 Nm

Worm gear SG 80 H

Continuous torque up to 10 Nm

The SG 80 H is the hollow shaft version of the SG 80 and is non-detachably connected to the motor. It is push-fitted and excellently suitable for applications with highly confined installation spaces and low circumferential backlash requirements. Friction losses can be neglected.

Features

_backlash 1° _level of efficiency (70...25) % bei 1.500 min⁻¹

_output shaft offset by 31 mm _arbitrary mounting position _lifetime lubrication

26

Gear stages	L _{Gear box}		
1	50 mm		
2	65,5 mm		
3	80,5 mm		

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Reinforced simple gears for MP xxx, MA xxx

Planetary gear PLG 63

Continuous torque up to 100 Nm

The PLG 63 is a gear with simple circumferential backlash and is non-detachably connected to the motor. It is suitable for any application in which the circumferential backlash is approx. 1° and the startup frequency does not have to meet special requirements. Friction losses can be neglected.

Features

- _circumferential backlash (1-1-1.5)°, (1-2-3) stages
- _efficiency (90-81-73) %, (1-2-3) stages
- _allowed shaft forces, (800/800) N, (axial/radial)

- _output shaft with double ball bearing
 _any installation position
 lifetime lubrication
- _lifetime lubrication

Worm gear SGF 120, with solid shaft Continuous torque up to 30 Nm

The SGF 120 is a worm gear with one-sided shaft and is nondetachably connected to the motor. It is particularly suited for applications with confined installation spaces and low circumferential backlash requirements. Friction losses can be neglected.

Features

_ circumferential backlash 1° _ efficiency (70...25) % at 1.500 min⁻¹ _ allowed shaft forces, 300/500 N, (axial/radial)

_output shaft offset by 31 mm _any installation position _lifetime lubrication

Worm gear SGF 120 H

Continuous torque up to 30 Nm

The SGF 120 H is the hollow shaft version of the SGF 120 and is non-detachably connected to the motor. It is pushfitted and excellently suitable for applications with highly confined installation spaces and low circumferential backlash requirements. Friction losses can be neglected.

Features

circumferential backlash 1°
 efficiency (70...25) % at 1.500 min⁻¹
 allowed shaft forces, 300/500 N, (axial/radial)

_output shaft offset by 31 mm _any installation position _lifetime lubrication up to 30 Nm

up to 30 Nm

up to 100 Nm

Gear stages	L _{gear}			
1	62,5 mm			
2	83 mm			
3	105 mm			

Illustrations are schematic diagrams. Binding dimension drawings and CAD data for specific order numbers at www.tr-electronic.com or on request.

Interfaces

PROFIBUS

The drive version with PROFIBUS DP is based on the device profile PROFIdrive V3.0 and is assigned to application class 3-position drive with decentralized positioning control (single axis point-to-point). The device profile V3.0 allows free configuration of process data telegrams as an essential enhancement to V2.0 with a fixed pre-defined telegram structure.

The appropriate communication profile is PROFIBUS DP VO/V1 with cyclic and acyclic data traffic. All common bit rates are accessible and get adjusted automatically based on a bus analysis. In the case a drive has a digital input, a handheld device can be connected. Simple processing operations are possible without any bus connection. If the bus is in operation, the input is for connecting hardware limit switches, or together with digital output, they serve as logical I/O module at the PROFIBUS.

PROFINET

The encoTRive drives with PROFINET use the same device profile PROFIdrive V3.0 as PROFIBUS DP. When migrating from PROFIBUS to PROFINET, the control logic and the PZD configuration remain the same. Logical programming adjustments do not occur. The range of PROFIBUS functions is fully integrated into PROFINET. PROFINET offers some additional functions. There is an alarm telegram in case of trouble when the cycle times are too low and there are more addressable nodes.

The projecting is carried out with the same tools used for PROFIBUS. Together with the identical program and processing logic, the change from PROFIBUS to PROFINET is solely a matter of the communication technology.

Features

- _positioning and speed control
- _cyclic and acyclic communication according to PROFIBUS DP VO/V1
- _free configurable process data telegrams according
- to device profile PROFIdrive V3.0
- _voltage failure-safe update possibility

Features

- _no bus termination necessary
- _address assignment via software
- _the protocol analysis can be done with freely available Ethernet tools (for example with Wireshark™)
- _the topology is simplified by star, lines, tree and ring structures as well as arbitrary hybrid forms

Technical Communication Data

Communication profile	PROFIBUS - DP	PROFINET-IO				
Range of functions	DP-V0 and DP-V1	Conformance Class A, Real Time Class1				
Device profile	Profidrive V3.0, Application Class 3					
Transfer	cyclic (process data), acyclic (alarm and time uncritical parameters)					
Process data configuration	free or over standard protocols					
Max. participants	max. 96	>1000				
Terminating resistance	resistance MD: internal, MP/MA: external needless					

Function blocks for PROFIBUS and PROFINET

The available demo function blocks allow commissioning any drive type without having to know the parameter features and the telegram sequences. The interfaces of the individual function blocks are identical for Profibus and Profinet.

	Description
Parameter PIV	Function block for parameterizing individual parameters using the cyclic PIV channel (parameter identification value)
Parameter DPV1	Function block for parameterizing individual parameters using the acylic data channel (DPV1)
Control PCD	Function block for commissioning and activating the drive using the cyclic PCD channel (processdata)
Demo Control PCD	Demo program for using the Control PCD function block to cyclically approach two positions in positioning mode

CANopen

CANopen

The drive version with CANopen is based on the device profile CiA DSP 402 – drives and motion control. The device profile permits a free configuration of process telegrams through PDO mapping of application objects. Available are 4 RxPDO and 4 TxPDO.

The associated communication profile is CiA DS 301 – CANopen application layer and communication profile.

Features

- _installation of the GSD (ML) file within the projecting tool _positioning and speed control
- _cylic and acylic communication with PDO/SDO
- _free configurable process data telegram according to the communication profile CiA DS 301
- _each transmission direction with up to 4 PDOs

CANopen defines, for distributed industrial automation systems, a standardized protocol based on CAN. All common bit rates are accessible and set over a DIP-switch. The fast exchange of process data uses a process data object (PDO), the access to the entries within the object directory happens over service data object (SDO). All drive specific information is summed up within the object directory.

Technical Communication Data

Communication profile	CANopen					
Device profile	CiA DS 301-DP					
Geräteprofil	CiA DSP 402					
Address range	0127					
Address adjustment	hardware, DIP-switch					
Bitrates	10/20/50/100/125/250/ 500/800/1.000 kBit/s					
Process data configuration	free or over standard protocols					
Terminating resistance	MD: internal, MP/MA: external					
Transfer	cyclic (PDO), acyclic (SDO)					

Electrical and mechanical accessories

EncoTRive-Control-Device-Tool (EDT)

EDT is the parameterization and diagnosis tool for all drives of the EncoTRive product family. It is accessed via predefined interfaces. In case of PROFIBUS, these interfaces are the Hilscher Master Class 1/2, Siemens CP5xxx and other interface cards. In addition, a PC can be connected to the MD type series via an integrated interface converter (RS-232).

The elements of the user interface are subdivided into logical subgroups. The user interface can therefore be controlled intuitively. There are two menu items for **positioning** and **speed control** modes which easily allow starting traveling operations. At the same time, current actual values are displayed, such as position and velocity.

A table consisting of the objects of the object directory lists the cyclic parameters in different colors. The control word and the status word are broken down to bit level. This allows free access to both the individual state transitions and the resulting states The individual actions are directly performed at the level of the status machine. The command order can be defined as desired.

Technical data

- _parameterization and diagnosis tool
- _connection options to PC via RS-232 or interface cards
- _intuitive user interface
- _input of position and velocity
- _freely accessible state transitions

- · ·	CITCOTTIC	
Silenene o		Tangandar (d. 87-1
	Ingle growt	Name -
	And A A A A A A A A A A A A A A A A A A	
	Parata statut data an	
	Per	Petroneer
ing other parts	1	(29.00
and the state	The second secon	1 10 10 1
	Reduction of the second second	

0 175-00 (99-0)4					Charles the		Prin in Charles and 1 Prin in Charles And Annual State (1997) Prin I Detected and page (1997) Auto (1	
-		fair teat			-			The A Determining on Contracting on The A Determining on Contracting on
-	Serre	lation in a	Net	Asea.	2,man		Au.	181 1 Parentes attended Partici
1	Cettrapeteres:	4	10000	(MOTOR)	10	0.00	1.1	In 2 Taxas (Shirts Taxas) (M.S.
2	forgang.	4	10006	-	10	0.00	8.2	Life it Tares (DNI)1./ Sport (HD
8	Int. Konstate	4	A	animal.		0.00	×	The in the Rates store is the store of the
4	Instang	4		desires!	44	-	× .	1 He 12 farmendert
100	Laproleert	4	MATTER	decine .	100	0000	4	1 Mar 10 Construction
191	(inclusion)		1000	desired.	100	with	A	State in the designation
140	Temperatur.	4	100085	mine	100	0.024		2-deciment
146	Detaminat	4		-	100	5014	1	Distantiation for a second
188	Reg.Lawrence	4	14184	-	-	1403	4	De Antenne Cartanana
290	Description .	1		and a	100	040	12	2011 Mineral Collinson
200	Gescheinstephen	4	4	desired	100	0402	10	The stand of the Addition
242	Instances	4	4.1	(ming)	100	0.425	×.	The state of the second
- 11			-				*	De l'Arrengelone Norreg De l'Arregelone (L'Arregelone De l'Arregelone (L'Arregelone)
1	to inche Longolduce			T Berner Triage	and the second	1533		pla - francisco provide a desta la
				121	100			the is between the starting frames,
-		10.014	_					Los a restriction of
								2 million in descention

Converter PC-USB to CANopen for the EDT

The PC-USB to CANopen converter enables the connection to CANopen networks via an USB interface. The converter is ideal for mobile use due to its compact plastic housing.

Technical Data

- _transmission rate up to 1 Mbit/s
- _connection to PC over USB 1.1, compatible to USB 2.0
- _connection to CAN-Bus over D-Sub, 9-pole according to CiA[®] 102
- _voltage supply over USB
- _CAN specification 2.0A (11-Bit-ID) and 2.0B (29-Bit-ID)
- _time-stamp resolution approx. 42 μs

Electrical and mechanical accessories

PROFIBUS hand-held operator panel for MD drives

The hand-held operator panel is connected to the M12 plug connectors of the digital I/Os. It allows executing simple drive functions without bus connection, for example, on initial commissioning or during service work. It is designed as a portable component and features a 5 m long connecting cable.

When it is fitted without bus connection or when PROFIBUS communication is interrupted, the hand-held panel automatically obtains control change rights. Monitoring algorithms ensure that the control change rights are assigned either only to the hand-held operator panel or only to the PROFIBUS master.

The hand-held operator panel holds the control change rights until either an acknowledgement is made via the control or a restart is carried out.

Features

- _jog into positive or negative direc tion up to the software limit switch
- _Indicator for software limit min., max. and reference
- _setting a reference point
- _fault acknowledgement

Demo kit and function block for S7 (PROFIBUS, PROFINET)

The demo kits contain all components required for fast commissioning. For this purpose, the power supply unit and the drive are already pre-wired. Commissioning only requires that the bus lines be established by means of configurable plug connectors.

EncoTRive demo kit contents

_encoTRive as chosen

- _wired power supply unit 230/110 VAC at 24/48 VDC
- _configurable connector set
- _RS-232 connecting cable
- _Bus cable
- _PC-USB to CANopen adapter, including driver
- _demo function blocks
- _encoTRive Device Tool (EDT)
- _documentation

TR-Electronic – your partner in automation

Rotary encoders

Absolute encoder, incremental rotary encoder, wire-actuated encoder

Rotary encoders with optical and magnetic scanning function register the precise position in a wide variety of applications and industries. In medical engineering, miniature versions ensure correct positioning while SIL3-approved absolute rotary encoders provide the necessary safety. We offer not only high-quality rotary encoders (from Ø 22 to 160 mm) for almost any application but also comprehensive accessories.

Linear encoders

Linear absolute measuring systems, laser displacement measurement

Linear encoders register linear motions in machines, tools and systems according to specific requirements using different technologies. Linear encoders allow measuring distances of max. 20 m almost without any wear. This value is max. 240 m for laser measuring systems. Machines and systems can be precisely controlled to reach their desired positions.

Motion

Servo drives, compact drives, process drives

Intelligent encoTRive drives are available with the current field bus systems, such as PROFIBUS, PROFINET and CANopen, within a power range of up to 300 watts. The drives are configured to meet customer requirements and can be freely combined with precision gear, holding brake and I/O. Values of up to 4,350 rpm and powerful 200 Nm are available to cope with demanding applications.

Components

Industrial PC, field bus I/O, PLC, HMI controller

Industrial PCs are available in numerous variants and offer customized calculation power for PC-assisted automation. Programmable logic controllers (PLC) are the traditional means for automation. HMI controllers establish the interface to the user. Field bus nodes, I/O modules and cam controllers complete the range of automation components.

Automation

Consulting and implementation for new machines and retrofit

You want to set up a largely automated new machine or retrofit and modernize your existing machine with automation systems? Then you just need our extensive expert knowledge and the more than 20 years of our experience.

Unidor

Blanking and forming, systems, controls and sensors

Trendsetting blanking and forming technology for more than 30 years. We are your reliable partner in the world of blanking and pressing and can prove this with thousands of machines which we have successfully installed all over the world. Sensors, controls and systems ensure optimal results in machines, tools and retrofit projects.

Deutschland

TR-Electronic GmbH

Eglishalde 6 D-78647 Trossingen Germany

Tel.: +49/7425 228-0 Fax: +49/7425 228-33

info@tr-electronic.de www.tr-electronic.de Technischer Innendienst TR-Electronic

Tessari Claudia Tel.: +49/7425 228-212 claudia.tessari@tr-electronic.de

Uwe Schmissrauter Tel.: +49/7425 228-207 uwe.schmissrauter@tr-electronic.de

Bastian Seufert Tel.: +49/7425 228-209 bastian.seufert@tr-electronic.de

Vertrieb Außendienst

Key Account **Heiko Flentje** Tel.: +49/7454 80 12 Fax +49/7454 87 28 4 heiko.flentje@tr-electronic.de

Guido Siebert Tel.: +49/7425 228-502 guido.siebert@tr-electronic.de

Andreas Bäuerle Tel.: +49/7425 228-503 Mobil +49/171 8865584 andreas.baeuerle@tr-electronic.de

Kay Vogt Tel.: +49/7805 9165684 Mobil +49/172 6758851 kay.vogt@tr-electronic.de **Dr. Dietrich Thoß** Tel.: +49/3661 671104 Mobil +49/172 9242376 dietrich.thoss@tr-electronic.de

Jörg Neugirg

Tel.: +49/7425 228-501 Mobil +49/172 9951710 joerg.neugirg@tr-electronic.de

Mathias Walz Tel.: +49/7425 228-504 Mobil +49/171 8719620 mathias.walz@tr-electronic.de

International

Argentinien Buenos Aires

AEA Aparátos Eléctricos Automáticos Tel.: +54/11 - 45 74 11 55 servicioalcliente@aea.com.ar www.aea.com.ar

Australien AU-Booragoon Sensor Measurement Tel.: +61/8 - 93 17 25 52 sales @sensormeasurement.com.au www.sensormeasurement.com.au

Belgien (NL-Geffen) TR-Electronic Benelux BV Tel.: +31/4335 23 614 rene.verbruggen@tr-electronic.nl www.tr-electronic.nl

Brasilien São Paulo Grupo C+ Tecnologia Tel.: +55/11 - 2168 6554 info@ctecnologia.com.br www.ctecnologia.com.br

Chile Santiago Chile Allware, Casa Haverbeck General Lagos 2060 2° Piso Region de Los Rios Valdivia Santiago Chile Tel.: +56 63/239298 www.allware.dv.cl

China Beijing

TR-Electronic (Beijing) CO., LTD. Tel.: +86/10 - 582 386 55 lu.yu@tr-electronic.de www.tr-electronic.com.cn

Dänemark Hedensted TR-Electronic Danmark ApS Tel.: +45/75 89 06 03 cbj@tr-electronic.dk www.tr-electronic.dk

Finnland Helsinki Sarlin Oy Ab Tel.: +358/10 - 550 4000 info@sarlin.com www.sarlin.com

Frankreich Serris TR-Electronic France SARL Tel.: +33/1 - 64 63 68 68 info@tr-electronic.fr www.tr-electronic.fr

Großbritannien Essex TR-Electronic Limited Tel.: +44/1 371 - 876 187 info@tr-electronic.co.uk www.tr-electronic.co.uk

Indien Pune

Global-Tech (India) Pvt Ltd Tel.: +91/20 - 2447 00 85 info@globaltechindia.com www.globaltechindia.com

Israel Kibutz Einat Dor Engineering Tel.: +972/3 900 75 95 info@doreng.co.il www.doreng.co.il

Italien Vaprio D'Agogna Telestar S.r.l. Tel.: +39/03 - 21 966 768 telestar@telestar-automation.it www.telestar-automation.it

Berlingo TR Systems Italia srl / Unidor Tel.: +39/030 9973094 info@trsystems.it www.trsystems.it

Japan Osaka SANTEST CO. LTD. Tel.: +81/6 - 6465 5561 info@santest.co.jp www.santest.co.jp

Kanada CDN-London TR Electronic Tel.: +1/519 - 452 1999 customercare@trelectronic.com www.trelectronic.com

Mexiko CDN-London TR Electronic Tel.: +1/519 - 452 1999 customercare@trelectronic.com www.trelectronic.com

Niederlande Geffen TR-Electronic Benelux BV Tel.: +31/4335 23 614 rene.verbruggen@tr-electronic.nl www.tr-electronic.nl

Norwegen Asker TR Electronic Norway AS Tel.: +46/708 696 533 info@trelectronic.no www.trelectronic.no

Österreich Bruck/Mur TR-Electronic GmbH Tel.: +43/3862 – 55006 0 info@tr-electronic.at www.tr-electronic.at

Peru São Paulo

Grupo C+ Tecnologia Tel.: +55/11 - 2168 6554 info@ctecnologia.com.br www.ctecnologia.com.br

Polen Lodz

Stoltronic-Polska Sp. z o.o Tel.: +43/69910532720 stoltronic@stoltronic.pl www.stoltronic.pl

Republik Korea Seoul MS Intech Co., Ltd. Tel.: +82/2 - 334 0577 sales@msintech.com www.msintech.com

Russland Moskau Sensotec LLC Tel.: +7 495 181-56-67 info@sensotek.ru www.sensotek.ru

Saudi-Arabien Ad Dammam Business Tribune Company Ltd. Tel.: +966/3-832 72 17 waleed@bustribune.com.sa www.bustribune.com

Schweden Sollentuna TR Electronic Sweden AB Tel.: +46/8 - 756 72 20 mailbox@trelectronic.se www.trelectronic.se

Schweiz Plan-les-Ouates TR-Electronic SA Tel.: +41/22 - 7 94 21 50 info@tr-electronic.ch www.tr-electronic.ch

Singapur Singapore Globaltec Electronics Pte. Ltd. Tel.: +65/6267 9188 janice@globaltec.com.sg www.globaltec.com.sg

Slowenien Maribor S.M.M. d.o.o. Tel.: +386/2450 2300 smm@siol.net www.smm.si

Spanien, Portugal Valencia

Intertronic Internacional, SL Tel.: +34/96 - 375 8050 info@intertronic.es www.intertronic.es

Südafrika Meyerton

Angstrom Engineering (Pty) Ltd. Tel.: +27/16 3620300 info@angstromeng.co.za www.angstromeng.co.za

Taiwan Beijing

TR-Electronic (Beijing) CO., LTD. Tel.: +86/10 - 582 386 55 lu.yu@tr-electronic.de www.tr-electronic.com.cn

Thailand Chonburi

T+R Electronic (Thailand) Co., Ltd. Tel.:+66/38 364 788 trthailand@trelectronic.co.th www.trelectronic.co.th

Tschechische Republik, Slowakei Praha 1.

DEL a.s. Tel.: +420/566 657 100 tr-electronic@del.cz www.del.cz

Türkei Karsiyaka-IZMIR ÜNİVERSA İÇ ve Dİİ TİC. MAK. SAN. LTD. ŞTİ. Tel.: +90/232 382 23 14 info@universa.com.tr www.universa.com.tr

USA (TR-Electronic) US-Troy

TR Electronic Tel.: +1/248 - 244 - 2280 customercare@trelectronic.com www.trelectronic.com

USA (TRsystems)

US-Birmingham TRS Fieldbus Systems, Inc. Tel.: +1/586 826 - 9696 support@trs-fieldbus.com www.trs-fieldbus.com

TR-Electronic GmbH Eglishalde 6 D - 78647 Trossingen

Tel. +49 7425 228-0 Fax +49 7425 228-33

info@tr-electronic.de www.tr-electronic.de

Last update: 04/2018 68-105-022 · TR-V-PR-GB-0010-06 Subject to technology and design modifications. Cover photo background: [©]kras99-fotolia.com